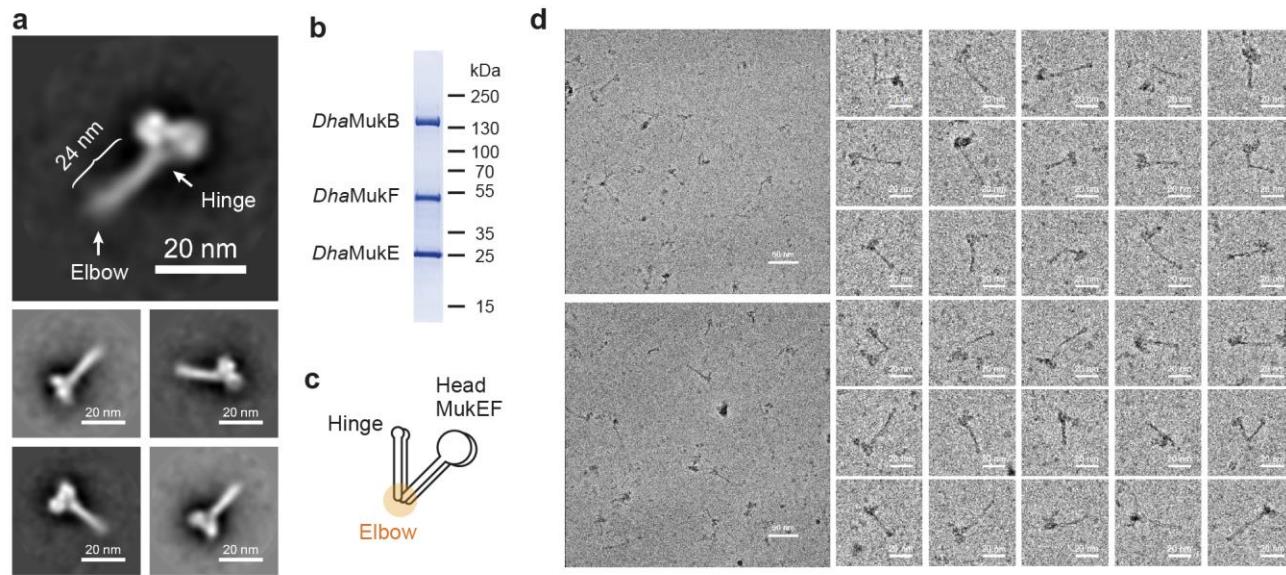


In the format provided by the authors and unedited.

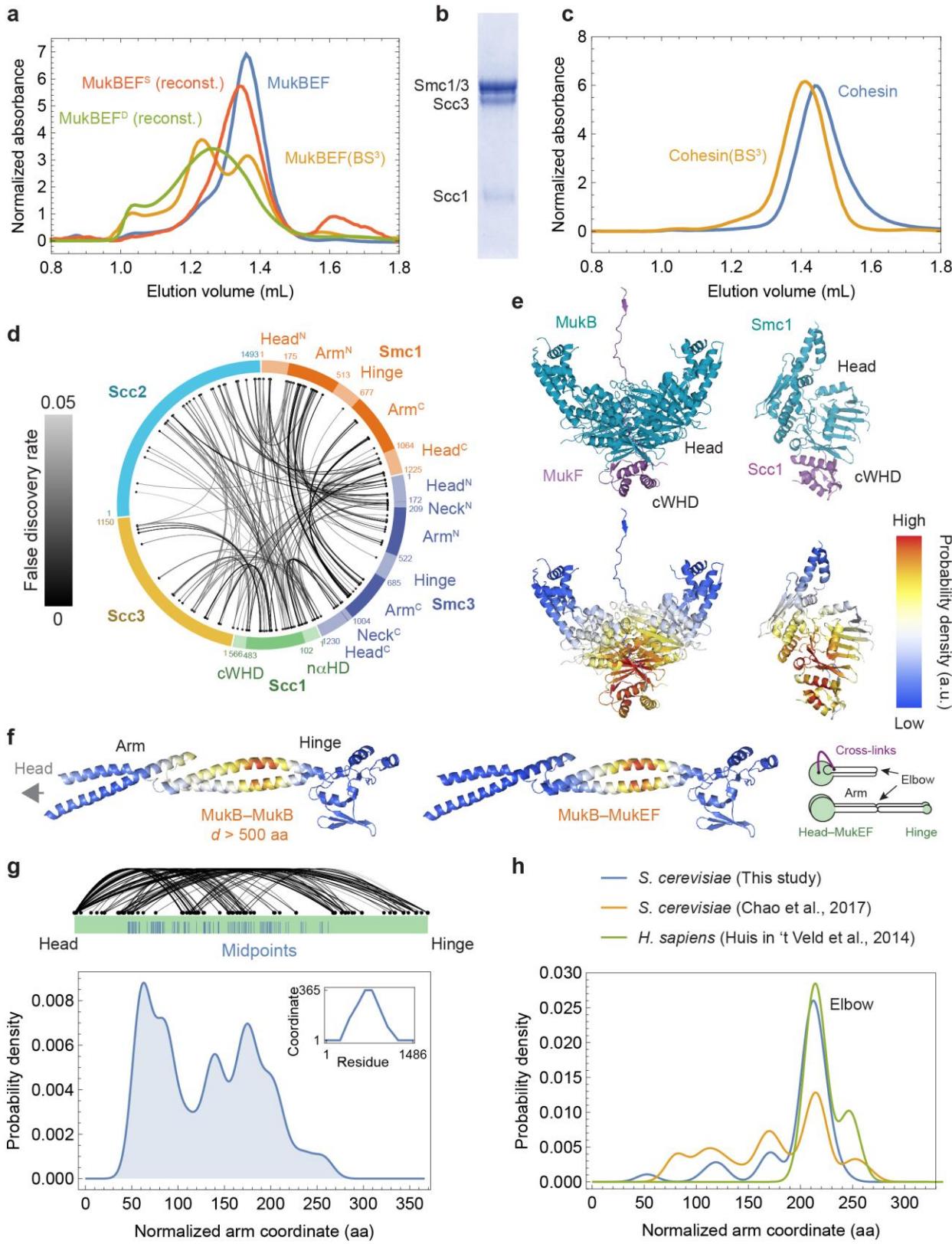
A folded conformation of MukBEF and cohesin


Frank Bürmann¹, Byung-Gil Lee¹, Thane Than², Ludwig Sinn³, Francis J O'Reilly³,
Stanislau Yatskevich^{4,6}, Juri Rappsilber^{3,5}, Bin Hu¹, Kim Nasmyth⁴ and Jan Löwe^{1*}

¹MRC Laboratory of Molecular Biology, Cambridge, UK. ²Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.

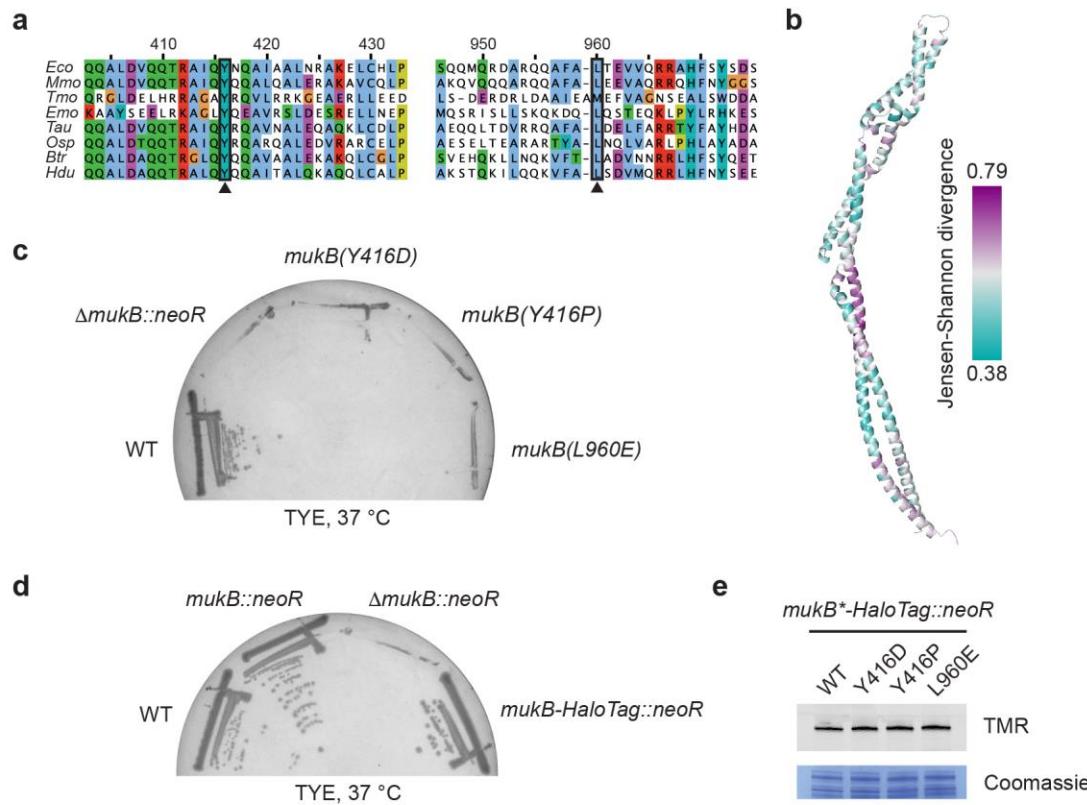
³Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany. ⁴Department of Biochemistry, University of Oxford, Oxford, UK.

⁵Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK. ⁶Present address: MRC Laboratory of Molecular Biology, Cambridge, UK.


*e-mail: jyl@mrc-lmb.cam.ac

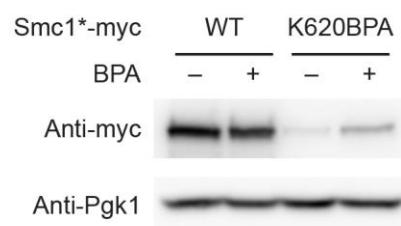
Supplementary Figure 1

EM analysis of MukBEF.


a, Negative stain 2D class averages for the folded conformation of native *E. coli* MukBEF using a circular mask of 640 Å. **b**, SDS-PAGE analysis of purified *Desulfovibrio halophilus* MukBEF. The gel was stained with Coomassie. **c**, Cartoon of intermediate particle shapes of *D. halophilus* MukBEF indicating the presence of a coiled-coil elbow in different conformations. **d**, Cryo-EM imaging of *D. halophilus* MukBEF in unsupported vitreous ice. Contrast was enhanced by use of a Volta phase plate and high total electron dose. Typical fields of view are shown on the left, examples of single particle images are shown on the right. We estimate that approximately 35 % of particles may adopt a fully folded conformation under the conditions used. Low particle abundance and sample heterogeneity prevented further structural analysis.

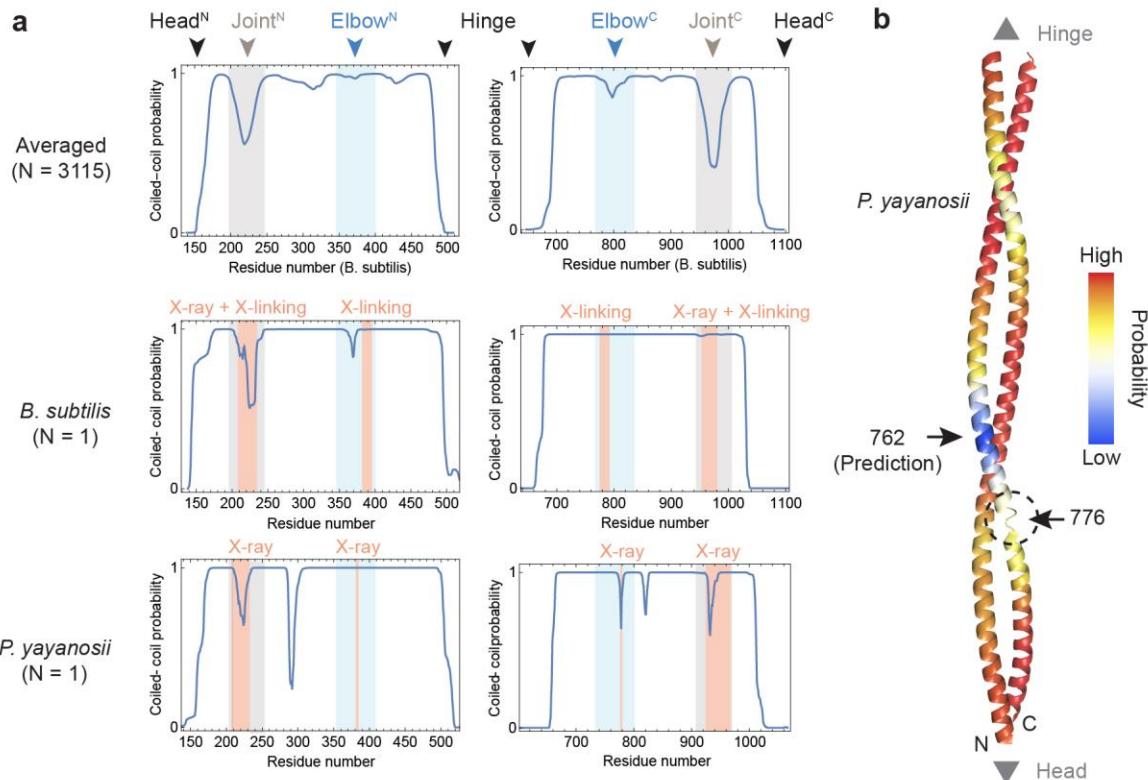
Supplementary Figure 2

Cross-linking and mass spectrometry of MukBEF and cohesin.


a, SEC profiles of native co-expressed MukBEF (blue), BS³ treated co-expressed MukBEF (orange), singlet MukBEF (MukBEF^S) reconstituted in buffer containing 40 mM NaCl, 2 mM MgCl₂ (red) and doublet MukBEF (MukBEF^D) reconstituted in buffer containing 200 mM NaCl (green). Reconstitution was similar to protocols established previously (*J. Biol. Chem.* **281**, 34208–34217, 2006). **b**, SDS-PAGE analysis of a purified cohesin complex containing Smc1, Smc3, Scc1 and Scc3. The gel was stained with Coomassie. **c**, SEC profiles of the cohesin complex containing Smc1, Smc3, Scc1 and Scc3 before and after treatment with BS³ (see Fig. 1h). **d**, Inter-subunit cross-links of a cohesin complex containing Smc1, Smc3, Scc1, Scc3 and Scc2. As in Fig. 2a. **e**, Kernel density estimates for the position of cross-link sites mapped onto the partial structure of the *H. ducreyi* MukBEF head module (PDB ID 3EUH) and the cohesin Smc1–Scc1 cWHD interface (PDB ID 1W1W). **f**, Kernel density estimates for long-distance cross-links at the MukB hinge. Probability density for MukB cross-links to MukB sites located at least 500 aa away (left) or to MukEF (middle). The cartoon (right) illustrates an explanation for the observed cross-linking pattern. **g**, Cross-link midpoint analysis for MukB performed as in Fig. 2c but using random resampling without replacement before data processing. **h**, Cross-link midpoint analysis for various cohesin datasets (as in Fig. 2). Peak density for human cohesin corresponds to residues 375 and 813 (Smc1) and 379 and 811 (Smc3).

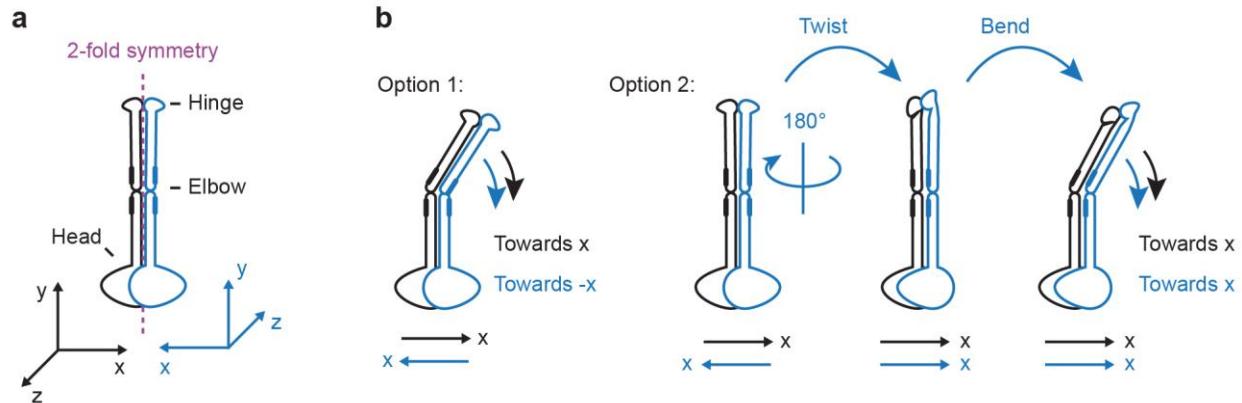
Supplementary Figure 3

Conservation analysis and mutagenesis of the MukB elbow.


a, Sequence alignment of the N-terminal (left) and C-terminal (right) parts of the MukB elbow. Residues chosen for mutagenesis are highlighted by triangles. *Eco*, *Escherichia coli*; *Mmo*, *Morganella morganii*; *Tmo*, *Thioflavlicoccus mobilis*; *Emo*, *Endozooicomonas montiporae*; *Tau*, *Tolumonas auensis*; *Osp*, *Oceanimonas* sp. GK1; *Btr*, *Bibersteinia trehalosi*; *Hdu*, *Haemophilus ducreyi*. **b**, Sequence conservation (Jensen-Shannon divergence) was mapped onto the structure (high conservation is purple, low conservation is cyan). **c**, Growth of strains containing point mutations at the elbow in the endogenous *mukB* gene. **d**, Construction of a functional *mukB-HaloTag* allele. **e**, Protein levels of elbow mutants fused to a HaloTag. Extracts were labelled with a HaloTag-TMR substrate and were analyzed by in-gel fluorescence (top) and Coomassie staining (bottom) after SDS-PAGE. WT, wild-type.

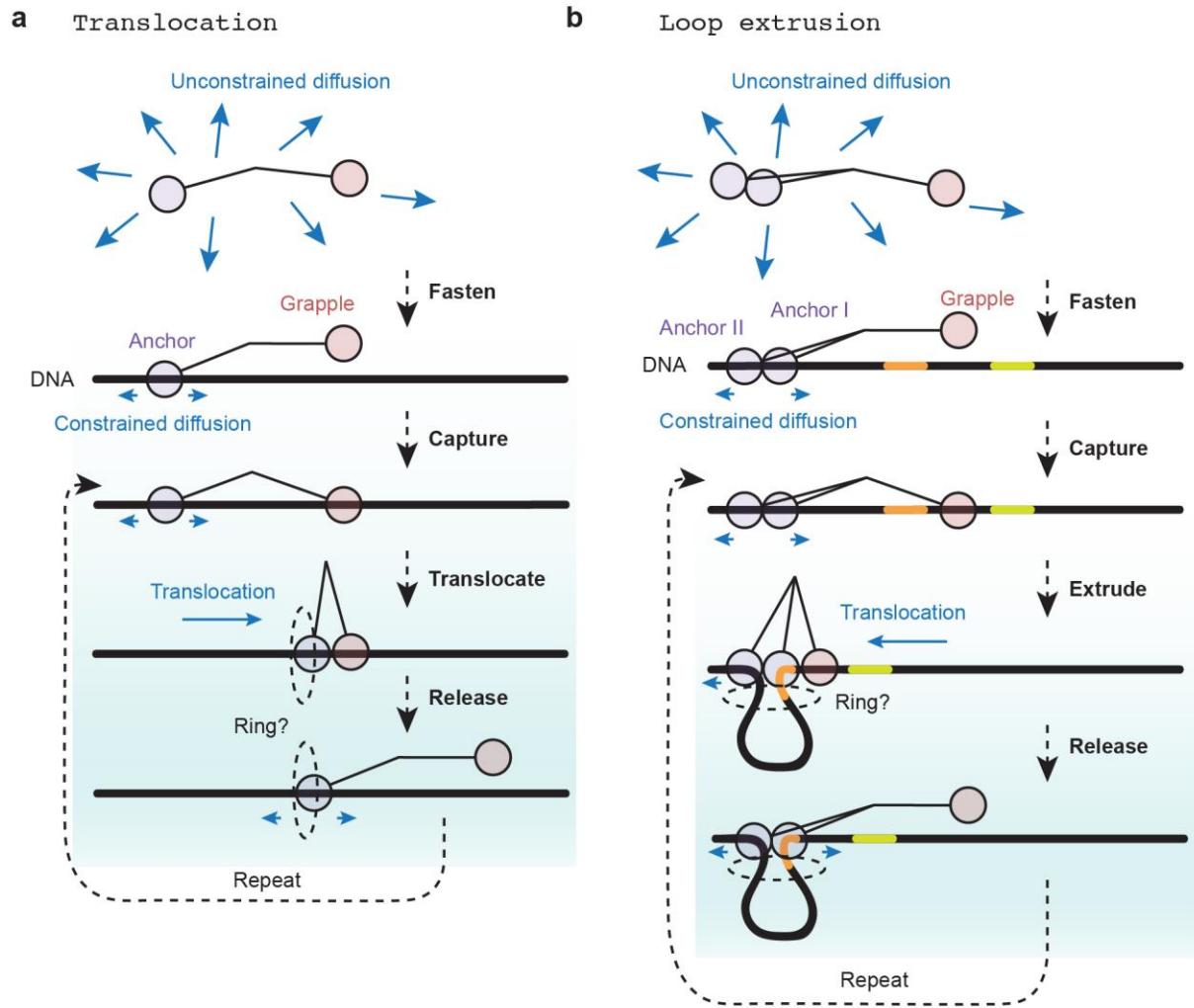
Supplementary Figure 4

BPA-dependent expression of Smc1(K620BPA).


Strains were grown either in the absence or presence of 1 mM BPA, and extracts were analyzed by Western blotting.

Supplementary Figure 5

Locations of coiled-coil discontinuities in bacterial and archaeal Smc proteins.

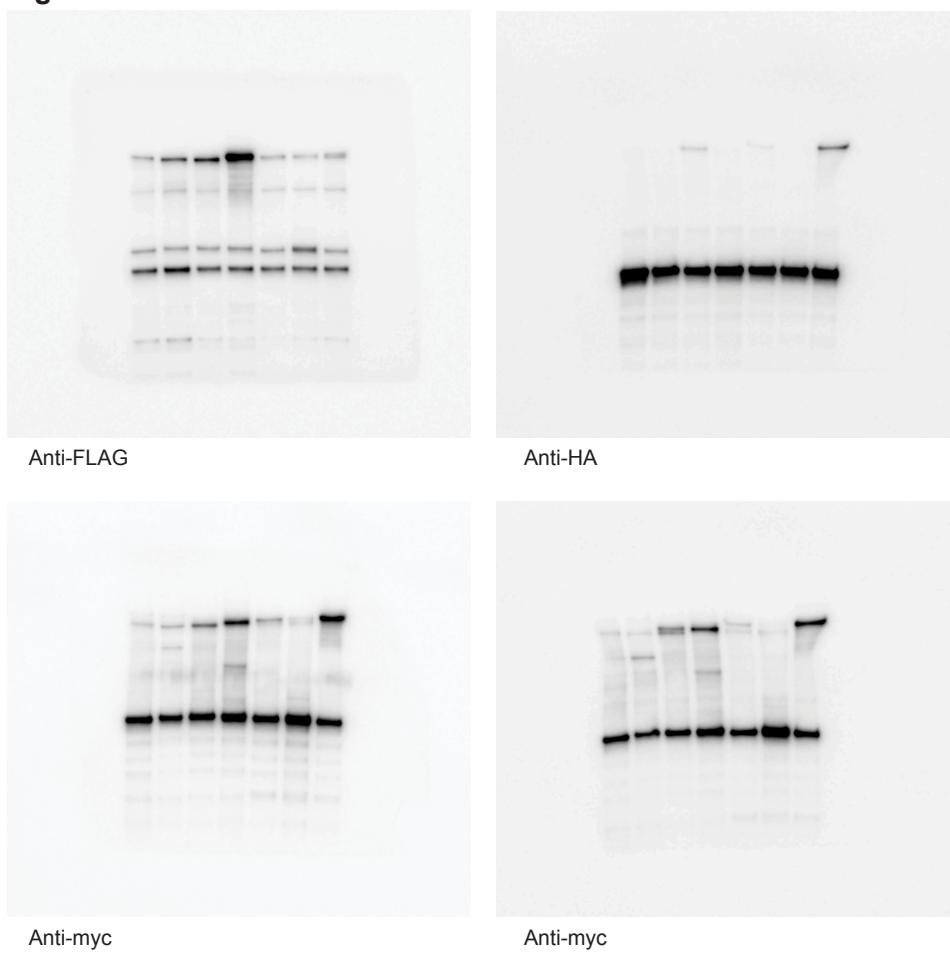

a, Aggregate coiled-coil probability profile (same as in Fig. 5) and single-sequence profiles for *B. subtilis* Smc (bacterial) and *Pyrococcus yayanosii* Smc (archaeal). Positions of coiled-coil discontinuities experimentally determined by X-ray crystallography (*Mol. Cell* **67**, 334-347.e5, 2017) or disulfide cross-linking (*Proteins* **83**, 1027-1045, 2015) are highlighted in red. **b**, The elbow region of *P. yayanosii* Smc. The predicted coiled-coil probability from aggregate analysis (see **a** and Fig. 5) is mapped onto the crystal structure of a central arm fragment (PDB ID 5XG2). Positions of the predicted and crystallographically determined discontinuities are shown.

Supplementary Figure 6

Bending of SMC dimers.

a, An SMC dimer with C2 symmetry. Monomers and their body-frame coordinate systems are shown in black or blue. The symmetry axis of the dimer is shown in purple. **b**, Symmetry breaking upon elbow bending. Option 1: monomers bend into opposite directions; Option 2: monomers twist and bend into the same direction. Orientations of the relevant body-frame coordinate axes are shown at the bottom.

Supplementary Figure 7


Inchworm models for DNA and translocation and loop extrusion.

a, DNA translocation model requiring a regulated grapple DNA binding site and a sliding anchor DNA binding site. DNA binding may or may not involve a DNA entrapping ring that could be used to enhance processivity. **b**, Loop extrusion using a second anchor site. DNA binding may or may not involve a DNA entrapping ring that could be used to enhance processivity.

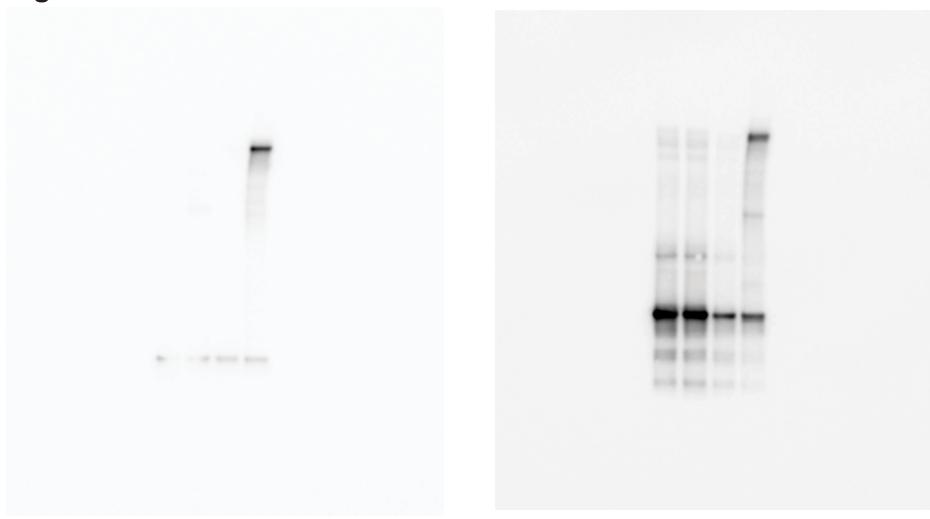
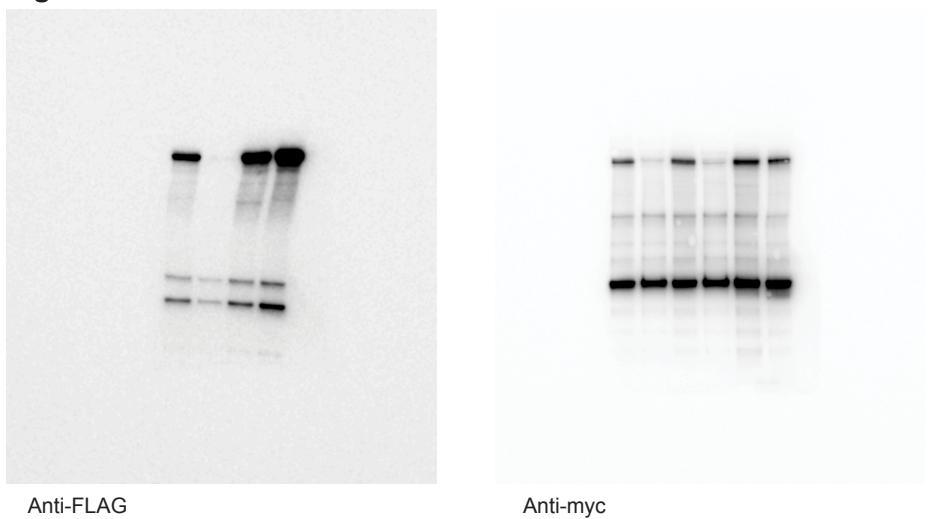

Fig. 1a

Fig. 4b


Fig. 4c

Anti-FLAG

Anti-myc

Fig. 4d

Anti-FLAG

Anti-myc

Supplementary Table 1 | Microbial strains.

Strain ID	Genotype	Figures
<i>E. coli</i> strains		
MG1655	F-, λ -, <i>rph-1</i> , <i>fnr</i> +	S3c, S3d
SFB012	MG1655, <i>mukB::neoR</i>	S3d
SFB017	MG1655, <i>mukB-HaloTag(C61V, C262A)::neoR</i>	S3d, S3e
SFB018	MG1655, Δ <i>mukB::neoR</i>	S3c, S3d
SFB022	MG1655, <i>mukB(Y416D)</i>	S3c
SFB025	MG1655, <i>mukB(Y416P)</i>	S3c
SFB026	MG1655, <i>mukB(L960E)</i>	S3c
SFB030	MG1655, <i>mukB(Y416D)-HaloTag(C61V, C262A)::neoR</i>	S3e
SFB031	MG1655, <i>mukB(Y416P)-HaloTag(C61V, C262A)::neoR</i>	S3e
SFB032	MG1655, <i>mukB(L960E)-HaloTag(C61V, C262A)::neoR</i>	S3e
<i>S. cerevisiae</i> strains		
W303	<i>Mat a, ade2-1, trp1-1, can1-100, leu2-3, 112, his3-11, 15, ura3, GAL, psi</i>	-
2017	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH826</i> (<i>Smc1(D588TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2018	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH827</i> (<i>Smc1(E562TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2019	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH828</i> (<i>Smc1(T565TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2020	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH829</i> (<i>Smc1(K620TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2021	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH830</i> (<i>Smc1(E591TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2022	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH831</i> (<i>Smc1(D592TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2023	W303, <i>Smc3-HA6::HIS3, Scc1-PK9::NatMX, pBH832</i> (<i>Smc1(D593TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2069	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH826</i> (<i>Smc1(D588TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2070	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH827</i> (<i>Smc1(E562TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA crosslink, Trp1)	4b
2071	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH828</i> (<i>Smc1(T565TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2072	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH829</i> (<i>Smc1(K620TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b, c, S4
2073	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH830</i> (<i>Smc1(E591TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2074	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH831</i> (<i>Smc1(D592TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2075	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH832</i> (<i>Smc1(D593TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4b
2221	W303, <i>Pds5-6xHis-6xFLAG::KanMX, ura3::Scc1-PK9::URA3, pBH829</i> (<i>Smc1(K620TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4d
2223	W303, <i>Pds5-6xHis-6xFLAG::KanMX, ura3::Scc1(V137K)-PK9::URA3, pBH829</i> (<i>Smc1(K620TAG)-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4d
2357	W303, <i>Pds5-6xHis-6xFLAG::KanMX, Scc1-PK9::NatMX, pBH768</i> (<i>Smc1-myc9</i> in YEplac181), <i>pBH61</i> (BPA cross-link, Trp1)	4c, S4